Stage IGE

Caractérisation et évolution des précipitations extrêmes horaires en France à partir d'un modèle régional de climat à convection profonde résolue

Decoopman Nicolas

Encadrement

Juliette Blanchet (IGE, CNRS) et Antoine Blanc (RTM)

UGA M2 SSD

3 septembre 2025

Contexte

Réchauffement de la planète

- Plus fort sur les continents que les océans (+1°C monde, +1,7°C France, +2°C Alpes françaises)
- L'air chaud contient plus de vapeur avant saturation (CC $+7\%/^{\circ}$ C)
- L'air chaud monte, se refroidit (-10°C/km), l'eau se condense (rosée)

En réponse au réchauffement

- Augmentation théorique des précipitations extrêmes
- Variable suivant les changements de circulations atmosphériques

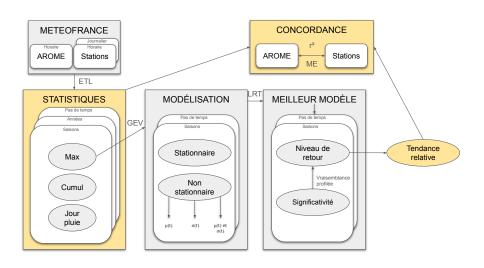
Pourquoi un modèle de climat sur de longues périodes?

- Données horaires à partir de 1990-2000
- Changement climatique vs. variabilité climatique
- Convection-Permitting, Regional Climate Model (2,5km 1h)
- Modèle numérique Application of Research to Operations at MEsoscale forcer par réanalyse ERA5

Intérêt de l'étude dans le paysage scientifique

1. Tendances des extrêmes horaires peu documentées

- Faible durée des séries horaires disponibles
- Complexité physique des processus convectifs à l'origine de ces extrêmes


2. Validité des extrêmes simulés par ce modèle

Jamais évaluée

Objectifs

- Evaluer AROME (ERA5) à reproduire les extrêmes horaires
- Evolution des extrêmes horaires dans un contexte de réchauffement climatique

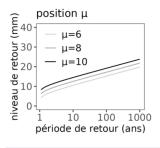
Méthodologie de l'étude

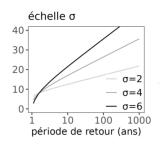
Méthodologie de modélisation statistique

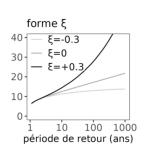
 $t \in \mathbb{N} \mid t_{\min} \leq t \leq t_{\max}$ la covariable temporelle normalisée

Modèle stationnaire

$$M_0(\theta_0)$$
 et $\theta_0=(\mu_0,\sigma_0,\xi_0)$ avec $\mu(t)=\mu_0$; $\sigma(t)=\sigma_0$; $\xi(t)=\xi_0$


Modèles non stationnaires


Lorsqu'un point de rupture noté $t_{\scriptscriptstyle +}$ est introduit, on note :

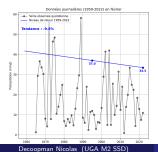

$$t^* = \begin{cases} 0 & \text{si } t \leq t_+ \\ t & \text{si } t > t_+ \end{cases}$$

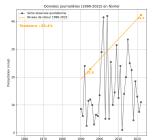
Méthodologie du calcul du niveau de retour

$$z_T = F^{-1}\left(1 - \frac{1}{T}\right) = \begin{cases} \mu + \frac{\sigma}{\xi}\left[\left(-\log\left(1 - \frac{1}{T}\right)\right)^{-\xi} - 1\right] & \text{si } \xi \neq 0 \\ \mu - \sigma\log\left(-\log\left(1 - \frac{1}{T}\right)\right) & \text{si } \xi = 0 \end{cases} \quad \text{(Gumbel)}$$

Avec

- $X \sim \text{GEV}(\mu, \sigma, \xi)$ avec F^{-1} la fonction quantile associée
- ullet Le niveau de retour z_T de la période T

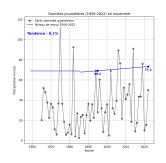

Méthodologie du calcul de tendance

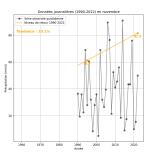

Pour t une année normalisée :

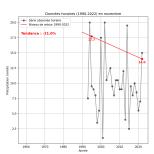
$$z_T(\mathbf{t}) = \begin{cases} \mu_0 + \mu_1 \, \mathbf{t} + \frac{\sigma_0 + \sigma_1 \, \mathbf{t}}{\xi} \, \left[\left(-\ln \left(1 - \frac{1}{T} \right) \right)^{-\xi} - 1 \right] & \text{si } \xi \neq 0 \text{ et } T > 1 \\ \mu_0 + \mu_1 \, \mathbf{t} - \left(\sigma_0 + \sigma_1 \, \mathbf{t} \right) \ln \left(-\ln \left(1 - \frac{1}{T} \right) \right) & \text{si } \xi = 0 \quad \text{(Gumbel)} \end{cases}$$


$$\text{Tendance} = \frac{z_T^{2022} - z_T^{1995}}{z_T^{1995}} \cdot 100$$

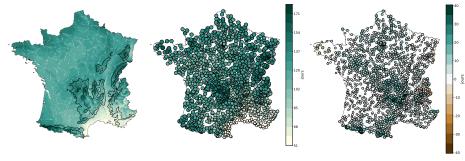
Station Météo-France de Saint-Marcel-lès-Valence, Vallée du Rhône $(M_2,\,M_3,\,M_3)$



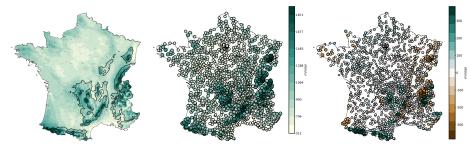

Stage IGE



Méthodologie du calcul de tendance


Station Météo-France de Saint-Marcel-lès-Valence, Vallée du Rhône $(M_1^*,\,M_2,\,M_2)$

Nombre de jours par an de précipitations (1959-2022) (n = 1583) (HYDRO)



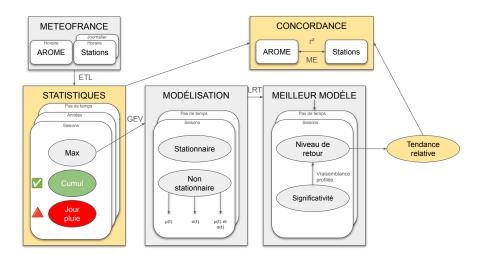

```
r = 0.95
```

 Δ (AROME - Stations) de 1959 à 2022 : +6.35 jours (+5.56%) Δ (AROME - Stations) de 1990 à 2022 : +2.82 jours (+2.50%)

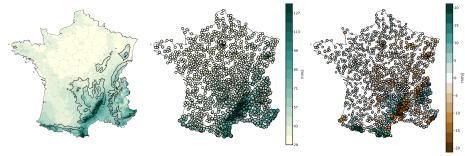
Tendance à déclencher des jours de pluie plus fréquemment que ce qui est observé

Cumul annuel des précipitations (1959-2022) (n = 1583) (HYDRO) à l'échelle quotidienne

r = 0.94

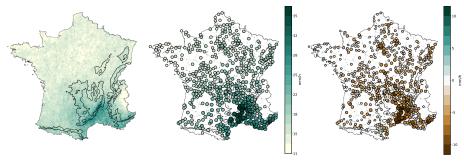

Δ (AROME - Stations) de 1959 à 2022 : +11.48 mm/an (+1.23%)

 Δ (AROME - Stations) de 1990 à 2022 : -22.88 mm/an (-2.49%)


Répartition correcte de la quantité totale d'eau

Résultats semblables à l'échelle horaire (1990-2022)

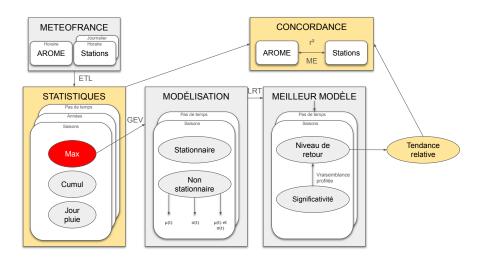
Pluies plus fréquentes en plus faibles quantités


Moyenne des maxima journaliers des précipitations (1959-2022) (n = 1583) (HYDRO)

r = 0.96

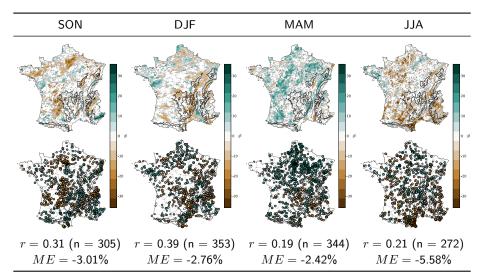
 Δ (AROME - Stations) de 1959 à 2022 : -1.18 mm/j (-2.35%) Δ (AROME - Stations) de 1990 à 2022 : -2.54 mm/j (-5.04%)

Moyenne des maxima horaires des précipitations (1990-2022) (n = 574) (HYDRO)


r = 0.89A (AROME Stations) do 1000 à 2022 : 3.42 mm

 Δ (AROME - Stations) de 1990 à 2022 : -3.42 mm/h (-18.65%)

Cohérence avec la littérature ([1], [2])


Sous-estime précipitations d'intensité élévées (>40 mm/h)

Bonne distribution et difficulté évènementielle

Tendances des précipitations extrêmes journalières

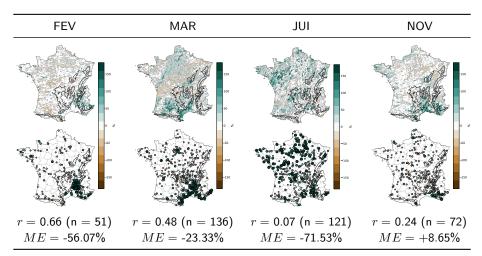
Tendances relatives de 1995 à 2022 du niveau de retour 10 ans

Une cohérence avec la littérature

IPCC, 2021 [3]

Hausse globale de la Terre (71%) du niveau de retour 10 ans (+6.7%)

J. Blanchet, A. Blanc, et J.-D. Creutin, 2021 [4]


Intensification confirmée dans le Sud-Est et Alpes du Sud

J.-M. Soubeyroux *et al.*, 2025 [5]

Projections nationales plus fortes dans le Nord (+20% pour $+4^{\circ}$ C)

Tendances des précipitations extrêmes horaires

Tendances relatives de 1995 à 2022 du niveau de retour 10 ans

Une importante hétérogénéité

IPCC, 2021 [3]

Faible confiance dans une hausse globale des extrêmes horaires

P. Molnar et al., 2015 [6]

- Sensibilités horaires de +7 à $+14\%/^{\circ}$ C (supérieures CC) pour des orages convectifs brefs
- AROME sous-estimate les pics horaires vs. stations captent des pointes marquées

M. Chevé, 2025 (stage)

Les tendances de températures AROME sont deux fois plus faibles que les tendances observées

Conclusion

AROME forcé par ERA5

- Structure spatiale des précipitations est captée (r élevée)
- Biais locaux notables dans certains reliefs
- Une sous-représentation marquée des événements convectifs estivaux
- Simule correctement la climatologie et les principaux forçages dynamiques

Les tendances apporte un diagnostic contrasté

- Confirmation à l'échelle journalière
- Hétérogénéité, peu significatif et faiblement corrélé à l'échelle horaire
- Indices d'intensification (vallée du Rhône et arc méditerranéen)

L'étude rejoint la littérature internationale

Diffulté de dégager des tendances robustes sur les extrêmes horaires

- Longueur limitée des séries
- Hétérogénéité des processus convectifs

References

- [1] C. Caillaud, S. Somot, A. Alias, et et al., « Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model », *Climate Dynamics*, vol. 56, p. 1717-1752, 2021, doi: 10.1007/s00382-020-05558-y.
- [2] N. Poncet *et al.*, « Does a convection-permitting regional climate model bring new perspectives on the projection of Mediterranean floods? », *Natural Hazards and Earth System Sciences*, vol. 24, n 4, p. 1163-1183, 2024, doi: 10.5194/nhess-24-1163-2024.
- [3] IPCC, Climate Change 2021: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2021. doi: 10.1017/9781009157896.
- [4] J. Blanchet, A. Blanc, et J.-D. Creutin, « Explaining recent trends in extreme precipitation in the Southwestern Alps by changes in atmospheric influences », Weather and Climate Extremes, vol. 33, p. 100356, 2021, doi: 10.1016/j.wace.2021.100356.
- [5] J.-M. Soubeyroux *et al.*, « À quel climat s'adapter en France selon la TRACC ? partie 2 », Meteo-France, avr. 2025. Disponible sur : https://hal.science/hal-04991790
- [6] P. Molnar *et al.*, « Relation of intense rainstorm properties to temperature », *Hydrology and Earth System Sciences*, vol. 19, p. 1753-1766, 2015.